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Relativistic virial relations are first discussed for a homogeneous electron liquid. The chemical potential is
involved in such virial relations, and the approximate effects of electron correlation are studied, using the
Quantum Monte Carlo (QMC) data of Kenny et al. (S.D. Kenny, G. Rajagopal, R.J. Needs, W.-K. Leung,
M.J. Godfrey, A.J. Williamson and W.M.C. Foulkes (1996). Phys. Rev. Lett., 77, 1099).

Attention is then shifted to inhomogeneous electron liquids. Based on Dirac’s relativistic wave equation, an
approximate propagator solution using a WKB-like treatment of this equation by Linderberg for central
fields is a focal point. This approach, it is demonstrated here, leads back to the exact single-particle kinetic
energy of the uniform electron gas and hence to the virial relations referred to above when the central field
is switched off. Virial relations are then referred to for the finite central field case. Finally, a local density
approximation applied to heavy atoms in intense magnetic fields is briefly treated, and another approximate
virial relation is exhibited.

Keywords: Relativistic virial theorem; Electron liquid; Magnetic field

1. BACKGROUND AND OUTLINE

About a decade ago, the relativistic virial was examined by one of us [1] within the
context of a local density approximation (LDA) for atoms with and without applied
magnetic fields. Here results are presented which, while they relax the constraint of
LDA until the penultimate section, are still semiclassical in that they invoke WKB-
like approximations to the energy-level spectrum resulting from Dirac’s relativistic
one-electron equation. Such an approximate treatment has been proposed recently by
Linderberg [2]: here its relation to the earlier nonrelativistic study of March and
Plaskett [3] on heavy atoms is established. This is then followed by a treatment of
atoms in intense magnetic fields, using the theory presented by Hill, Grout and
March [4], which again is of semiclassical nature, though now additional approxima-
tions are involved beyond invoking WKB-like eigenvalue evaluation. The outline of
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the article is then as follows. In Section 2 immediately below the focal point is the rela-
tivistic homogeneous electron liquid. The high-density correlation energy of Needs et al.
[5] is utilized and from this some approximate consequences of the virial follow, and in
particular the correlation kinetic energy is extracted.

The remainder of this investigation is concerned with inhomogeneous electronic
assemblies with and without applied magnetic fields. Thus in Section 3 (plus
Appendix A) an analysis of a WKB-like treatment, of essentially the propagator result-
ing from Dirac’s theory, is made, the nonrelativistic limit being here shown to lead to an
earlier result of March and Plaskett [3]. In the homogeneous limit, the result of
Linderberg for the kinetic energy density is shown to reduce to the result earlier
obtained by Baltin and March [6]. Section 3.2 constitutes a brief derivation of the
virial in terms of the kinetic energy density. In Section 4 attention is then shifted to
the case of atomic ions placed in an intense applied magnetic field, such as that that
exists at the surface of neutron stars (� 1013Gauss). Because of the additional complex-
ity due to the intense applied field we return to LDA and use the (semiclassical) relati-
vistic study of Hill, Grout and March [4] to establish a virial relation. Section 5
constitutes a summary plus some proposals for future investigation in the general
area of this article.

2. HOMOGENEOUS RELATIVISTIC ELECTRON LIQUID

The Euler equation of density functional theory reflects the constancy of the chemical
potential � at every point r in an inhomogeneous electron assembly. It reads [7]

� ¼
�Ts½��

��ðrÞ
þ VðrÞ ð1Þ

where Ts[�] is the (as yet unknown) single-particle kinetic energy functional of the
ground-state density �(r). In Eq. (1), the final term represents the effective one-body
potential which is central to current approximations of density functional theory. In
turn V(r) is the sum of three terms:

VðrÞ ¼ VextðrÞ þ VesðrÞ þ VxcðrÞ, ð2Þ

respectively the external potential, the electrostatic potential created by the density �(r),
and the exchange-correlation potential Vxc(r) given by

VxcðrÞ ¼
�Exc½��

��ðrÞ
ð3Þ

Again, as with Ts[�] in Eq. (1), the exchange-correlation energy functional Exc[�] is not
known.

Our concern in the present study is with the relativistic counterparts of the above
theory. By inclusion of the fine structure constant � ¼ e2=�hhc ¼ 1=137, the detail in
the theory proliferates and it is natural enough therefore to deal first with the relativistic
homogeneous electron gas.
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2.1 Single-particle Kinetic Energy of a Relativistic Homogeneous Electron Assembly

Unlike the inhomogeneous electron liquid, the noninteracting single-particle kinetic
energy density, say t�(�), where � is the (now constant) electron density, is known
[6], namely:

t�ð�Þ ¼ a �
1

2
þ �2

� �
1þ �2
� �1=2

�
4

3
�3 �

1

2
ln �þ ð1þ �2Þ

1=2
� �� �

ð4Þ

in terms of the basic dimensionless variable � ¼ b�1=3, the constants a and b being
given by

a ¼
1

4�2

� �
m0c

�hh

� �3
m0c

2 b ¼ ð3�2Þ
1=3 �hh

m0c

� �
ð5Þ

Fortunately, as will be shown below, from the form (1), the average of the virial r:Fh i

(which simply weights the virial with �(r)) involves only @t�ð�Þ=@�, which has the much
simpler form

@t�
@�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2f þm2

0c
4

q
�m0c

2 ð6Þ

where the Fermi momentum pf is related to the uniform electron density � by the usual
phase space result [3]

� ¼
8�

3h3
p3f ð7Þ

The rest mass energy has been subtracted in Eq. (6) so as to recover the correct
nonrelativistic limit, as c ! 1.

2.2 Exchange-correlation energy of a Relativistic Homogeneous Electron Liquid

Using QMC calculations, Kenny et al. [5] put forward the following result for the
relativistic exchange-correlation energy per electron, say �relxc ðrsÞ, (in a.u.)

�relxc ðrsÞ ¼ �nonrelxc ðrsÞ þ �HF
x ðrsÞf ðrsÞ ð8Þ

with the variable rs defined as usual by

� ¼
1

ð4=3Þ�r3s
ð9Þ

and where �HF
x ðrsÞ denotes the relativistic correction to the exchange energy from

Hartree–Fock theory which they show to be equal to

�HF
x ðrsÞ ¼

9

8c2r3s
ð10Þ
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The function f(rs) was obtained by Kenny et al. [5] by a fit to their discrete data points
and is given by

f ðrsÞ ¼
X4
n¼0

cnr
n
s 0:1 � rs � 5 ð11Þ

¼ aþ brs 5 < rs � 10 ð12Þ

The constants in Eqs. (11) and (12) are c0¼ 0.99818, c1¼� 0.29020, c2¼ 0.14474,
c3¼� 0.02573, c4¼ 0.001634, a¼ 0.75, and b¼ 0.044. In the very high-density regime,
where rs<0.1, correlation can be neglected and the relativistic exchange-correlation
energy is assumed to be well approximated by the local density approximation to the
relativistic exchange-only energy which was first obtained by Akhiezer and
Peletminskii [8] (see also [9] and references therein) and is given by

"x� ¼ "x0Fð�Þ ¼ �
3

4

3

�

� �1=3
 !

�1=3 1�
3f�ð1þ �2Þ

1=2
� ln½�þ ð1þ �2Þ

1=2
�g2

2�4


 �
ð13Þ

with the variable � defined above.
From these results we evaluated the change in the chemical potential, say ��, due to

the relativistic correction to the exchange-correlation energy, i.e. @ð�"xcÞ=@� where
�"xc now denotes the change in the exchange-correlation energy density, i.e.
�"xc ¼ ���x� ¼ �ð�relxc � �nonrelxc Þ. In Fig. 1 we plot @ð�"xcÞ=@� versus rs.

FIGURE 1 Relates to the change in chemical potential, �m say, due to relativistic correction to the
exchange-correlation energy in homogeneous electron liquid. Quantity actually plotted as a function of
mean interelectronic spacing rs is @ð��xcÞ=@� where ��xc denotes the change in the exchange-correlation
energy density ��xc ¼ �ð�relxc � �nonrelxc Þ.
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3. INHOMOGENEOUS ELECTRON LIQUIDS

3.1 Linderberg’s Approximate Solution of the Radial Dirac

Equation for a General Central Potential V(r)

We turn next, from the homogeneous (thermodynamic limit) assembly above to
Linderberg’s use of propagator theory for finite central field systems and in particular
heavy atoms [2]. Here, this theory yields the electron density in terms of an integral over
the residues of the Green function at the poles corresponding to the occupied levels.
As Linderberg then shows for a central potential V(r), states with quantum number
k are degenerate and the total density resulting from these states is found to be

�kðrÞ ¼
2jkj

�
c�

VðrÞ

e2c


 �2
� c2 �

kþ ð1=2Þ

r


 �2( )1=2

ð14Þ

This is to be compared with the nonrelativistic result of March and Plaskett [3], who
write using semiclassical WKB-like notation (their Eq. (12))

plðE, rÞ ¼ 2m0 E � VðrÞ �
ðl þ ð1=2ÞÞ2

r2
�hh2

2m0


 �� �1=2

ð15Þ

where pl is an ‘effective momentum’ for orbital angular momentum quantum number l.
If we introduce atomic units ðm0 ¼ �hh ¼ 1Þ into the result of March and Plaskett plus
the limit (say of the Thomas–Fermi neutral atom) E! 0, it is straightforward to
show that the Linderberg result (14) reduces to that of March and Plaskett (15) in the
nonrelativisitc limit.

The total density �(r) can be obtained by summing over all k-values and evaluating
this sum approximately by replacing it with an integration. Linderberg thereby
obtained the electron density �(r) and to establish a parallel with Eq. (1), one must
now find an expression for the kinetic energy density t�(r) associated with his density
�(r). In fact, the above parallel is best made after summing over k and then replacing
the resultant sum by an (of course approximate) integration. Linderberg then obtains
the kinetic energy, including the energy m0c

2 associated with the rest mass of the
electron as

t�ðrÞ ¼
cr2

2�
c2 þ

Z2ð0Þ

c2r2


 �2
�ðrÞ þ �3ðrÞ

½1� �ðrÞ2�2
�
1

2
ln

1þ �ðrÞ

1� �ðrÞ

� �� �
ð16Þ

As he points out, the quantity �(r) in terms of the density �(r) is given by

�ðrÞ ¼
3��ðrÞ

4c3r2

� �1=3�
1þ

Z2ð0Þ

c4r2
þ

3��ðrÞ

4c3r2

� �2=3
( )1=2

ð17Þ
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Here Z(0) reflects the self-consistent potential V(r) in Linderberg’s treatment through
the equation

VðrÞ ¼ �
ZðrÞe2

r
ð18Þ

where evidently Z(r)|r¼ 0¼Z(0).
In Appendix A we show that in the limit of zero external field, the Linderberg expres-

sion for t�(r) in Eq. (16) reduces to the result (4) obtained by Baltin and March [6].
These authors had essentially derived the result (4) for one-dimensional systems
only, but reasoned that its validity extended to three-dimensional systems as is
confirmed here.

Thus, Linderberg’s result has the correct limit given earlier by Baltin and March
when the potential driving the inhomogeneity in the density in this approximate propa-
gator theory is switched off. This has encouraged us to briefly summarize how the
results from Linderberg’s propagator approximation can be used to calculate the
virial hr � Fi of the central field problem under consideration.

3.2 Virial Theorem for Finite Central Field Problems from Linderberg’s Approximation

The chemical potential in Eq. (1), posed relativistically, now satisfies

�� ¼
@t�
@�

þ VðrÞ ð19Þ

and we find, by differentiating with respect to r and utilizing the constancy of ��, the
result that the force F ¼ �@V=@r is given by

�
@V

@r
¼ FðrÞ ¼

@

@r

@t�
@�ðrÞ


 �
ð20Þ

and evidently therefore the average virial hr � Fi is given by

hr � Fi ¼ �

Z
�ðrÞr

@V

@r
dr ð21Þ

¼ �

Z
�ðrÞr

@

@r

@t�ðrÞ

@�


 �
dr ð22Þ

So in essence, the work of Linderberg provides all the necessary physical quantities to
evaluate the virial hr � Fi for an inhomogeneous relativistic central field problem.

While this is a formally correct deduction, we emphasize that whereas the key ingre-
dient to calculate the virial, namely t�(r), is exact when the external potential is
‘switched off’, as demonstrated in Appendix A, Eq. (16) for the finite atomic systems
now under discussion involves WKB-like approximation plus the modification of
Linderberg attributes to Kramers and for which he also refers Kemble’s book. We
also caution now, in contrast to the exact homogeneous limit in Appendix A, that
the self-consistent ‘atom’ in this approach, as Linderberg also correctly stresses, has
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a finite radius for the electron density distribution. As the detail then proliferates, we
shall not pursue this matter further.

4. RELATIVISTIC LOCAL DENSITY APPROXIMATION FOR HEAVY

ATOMS IN INTENSE MAGNETIC FIELDS

From the relativistic theory of Hill, Grout and March [4], the Euler equation for their
local density method reads, in an applied magnetic field of strength B,

��B ¼
c2h4�2

4e2B2
þm2

0c
4


 �1=2
�m0c

2 þ VðrÞ ð23Þ

and hence

dt�B

d�
¼

c2h4�2

4e2B2
þm2

0c
4


 �1=2
�m0c

2 ð24Þ

We now note from Eq. (19) of [1] that one possible definition of the kinetic energy
density t(r) is given by

tðrÞ ¼ �
@t

@�
þ
1

3
�r

d

dr

dt

d�

� �
ð25Þ

which obviously lacks uniqueness since any function of r can be added to t(r) which
integrates to zero through the whole of space.

But now from the Euler equation (23), it follows since the chemical potential � is the
same at every point in the electron gas that

0 ¼
d

dr

dt�B

d�
þ
dV

dr
ð26Þ

and therefore, by substitution in Eq. (25)

t�BðrÞ ¼ �
@t�B
@�

�
1

3
�r

@V

@r
ð27Þ

Thus the average of the virial hr � Fi follows from Eq. (27) as

1

3
hr � Fi ¼ T�B �

Z
�
@t�B
@�

dr, ð28Þ

where T�B¼
R
t�b[r] dr. Therefore, in the high B theory of Hill, Grout and March [4]

the explicit virial relation is given by Eq. (28), with @t�B=@� from Eq. (26).
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5. SUMMARY AND FUTURE DIRECTIONS

The main achievements of the present study of relativistic virial relations are for the
change in the chemical potential of a homogeneous electron liquid due to the relativistic
correction to the exchange-correlation energy, the latter being displayed in Fig. 1 using
the QMC data of Kenny et al. [5]. Turning to spatially varying densities, the main
results reported stem from the approximate propagator solution kindly made available
to us by Linderberg [2]. His approach, as demonstrated in Section 3.1 and Appendix A,
leads back to the results (4) and (6) given by Baltin and March [6] when the central
potential V(r) is ‘switched off’. Then in Section 4, heavy atoms in intense magnetic
fields such as exist at the surface of neutron stars, but now treated in LDA, are
considered, the (now approximate) relativistic virial relation in Eq. (28) then resulting.

It would be of obvious interest for the future if formally exact treatments of the
relativistic virial theorem, such as presented for instance in the work of Goldman
and Drake [10], who were concerned with a Dirac electron in an arbitrary local
potential, could be employed to make contact with the approximate theory of the
virial in the case of inhomogeneous electron liquids as discussed especially in
Sections 3.2 and 4 above.
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APPENDIX A: HOMOGENEOUS RELATIVISTIC ELECTRON LIQUID LIMIT

FROM LINDERBERG’S APPROXIMATE PROPAGATOR THEORY

When we ‘switch off’ the potential in Linderberg’s approximate theory based on the
Dirac relativistic wave equation, we find

� ¼
b�1=3

ð1þ b2�2=3Þ1=2
ðA:1Þ

where in Linderberg’s units (compare Eq. (5))

b ¼ ð3�2Þ
1=3=c ðA:2Þ
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Similarly the kinetic energy density t� is in this uniform limit given by

t� ¼
c5

8�2

� þ �3

½1� �2�2
�
1

2
ln

1þ �

1� �

� �
 �
ðA:3Þ

Inserting Eq. (A.1) into Eq. (A.3) we obtain after some algebra

t� ¼
c5

4�2
�

1

2
þ �2

� �
1þ �2
� �1=2

�
1

2
ln �þ ð1þ �2Þ

1=2
� �� �

ðA:4Þ

The extra term proportional to �3 appearing in the Baltin–March expression (4) is just
the rest mass energy density m0c

2� which was explicitly subtracted in their derivation,
but is still present in the Linderberg work. Both expressions are thus found to be
identical.
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